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Through detailed comparisons between embedded atom method �EAM� and first-principles calculations for
Al, we find that EAM tends to fail when there are large electron-density gradients present. We attribute the
observed failures to the violation of the uniform density approximation �UDA� underlying EAM. To remedy
the insufficiency of UDA, we propose a gradient-corrected EAM model which introduces gradient corrections
to the embedding function in terms of exchange correlation and kinetic energies. Based on the perturbation
theory of “quasiatoms” and density-functional theory, the embedding function captures the essential physics
missing in UDA and paves the way for developing more transferable EAM potentials. With Voter-Chen EAM
potential as an example, we show that the gradient corrections can significantly improve the transferability of
the potential.
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I. INTRODUCTION

Atomistic simulations have become an increasingly pow-
erful tool in materials research and a worthy partner of
theory and experiment. Among the great many atomistic
models, the embedded atom method �EAM� �Refs. 1 and 2�
has emerged as one of the most successful and versatile ap-
proaches, representing the mainstay of empirical atomistic
simulations. To date, EAM has been applied to a variety of
material systems, such as liquids, metals and alloys, semi-
conductors, ceramics, polymers, nanostructures, and com-
posite materials. Examples of problems that EAM has stud-
ied include structure, energetics and dynamics of lattice
defects,3–5 elastic response and phonons,6–8 fracture and
plastic deformation,9–11 surface and surface growth,12–15 ther-
modynamics properties,16 phase transitions,17 etc. The appli-
cations of EAM simulations have been reviewed in Ref. 18.
The success and popularity of EAM are a consequence of its
sound theoretical foundation—the density-functional theory
�DFT� and its simple analytical expression. The former as-
sures that the essential physics be captured by EAM and the
latter endows EAM with excellent numerical efficiency, in
par with pair potentials.

Despite its great success, EAM suffers from a major
deficiency—the lack of transferability. Most of EAM models
are only reliable in regimes for which they were parameter-
ized; beyond the regimes of parametrization, the reliability of
EAM potentials quickly deteriorates. As a result, the predict-
ability of EAM is often questionable in defect systems and in
nonequilibrium conditions where relevant physical quantities
are not known accurately a priori and hence not included in
the parametrization of the potentials. As to all empirical
models, the lack of transferability of EAM is an indication
that some theoretical approximations of EAM model are not
generally valid.

In this paper, we show that the lack of transferability of
EAM is attributable to the uniform background density ap-
proximation of EAM embedding function. We find that EAM
fails whenever there are large gradients of electron density in

the system. We overcome the deficiency of the uniform den-
sity approximation �UDA� by proposing a density gradient-
corrected EAM model, which incorporates the gradients of
the valence electronic density in the embedding function.
Specifically, we introduce additional terms into the embed-
ding function, which correspond to the density gradient cor-
rections to the exchange-correlation and kinetic-energy con-
tributions. Motivated by the Perdew-Burke-Ernzerhof �PBE�
�Ref. 19� generalized gradient approximation �GGA� of DFT
and the perturbation theory of “quasiatoms,”20 the present
model applies to an inhomogeneous background density and
has the correct limiting behavior as the exact energy func-
tions. As a consequence, it extends the applicability of EAM
and paves the way for developing more transferable
potentials.

II. FAILURES OF THE UNIFORM DENSITY
APPROXIMATION

First, we demonstrate that the failure of EAM can be
linked to the presence of large gradients of electron density
by comparing EAM with first-principles DFT calculations.
We establish this fact in bulk Al for which EAM is supposed
to work very well. Several excellent EAM potentials21–23 ex-
ist and they are used for comparisons. Both elastic properties
and stacking fault energy of Al are calculated. We compute
the cohesive energy per atom and the stress tensor as a func-
tion of the right Cauchy-Green deformation tensor Cij �i , j
=1,2 ,3� for a primitive unit cell of bulk Al. There are six
independent C elements, with the diagonal and off-diagonal
elements varying from −0.28 to 0.28 and −0.18 to 0.18, re-
spectively, giving rise to different elastic deformations. In
order to provide precise comparisons, we utilize the sparse-
grid method24—a novel algorithm that allows us to represent
a fine high-dimensional mesh very efficiently. Specifically,
we sample 483,201 data points in sparse grids which corre-
spond to a regular grid with 65 points in each of the six
dimensions of Cij and 656�7.5�1010 points in total. More-
over, by taking advantage of the underlying symmetry of the
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system, we further reduce the number of data points from
483,201 to 24,567 for which we carry out first-principles and
EAM calculations.

The first-principles DFT calculations are based on the
plane-wave and projector augmented-wave method25 as
implemented in the Vienna Ab initio Simulation Package
�VASP�.26,27 We use PBE-GGA with a high plane-wave cutoff
energy of 360 eV to obtain reliable energy and stress. The k
points are sampled according to Monkhorst-Pack method
with the k-point spacing less than 0.0252 Å−1. A Gaussian
smearing of 0.1 eV is employed to speed up the convergence
of the calculations. As for EAM calculations, we employ
three widely used EAM potentials, developed by Ercolessi
and Adams,21 Mishin et al.,22 and Voter and Chen.23 The first
two potentials were constructed by fitting to both experimen-
tal and first-principles data, while Voter-Chen �VC� potential
was fitted only to experimental data. Although some EAM
potentials21 were constructed with different motivations from
the original EAM model, they all use the UDA in effect. For
the convenience of presentation, we define �V=

V−V0

V0
and

��=
�−�0

�0
, where V �V0� and � ��0� are the volume and

solid angle of the deformed �undeformed� unit cell. The solid
angle is defined relative to the basis vectors of the unit cell.
�V and �� characterize the volumetric and nonvolumetric
deformation of the unit cell.

In Fig. 1, we present the difference in the cohesive energy
��E=EEAM−EVASP� and the stress tensor �����= ��EAM
−�VASP��. Overall, we find excellent agreement between the
first-principles and EAM results over a wide range of
deformations—a remarkable feat of EAM. Furthermore, the
errors are insensitive to the solid angle, ��, which reflects
the delocalized nature of the metallic bonds in Al, and thus
justify the use of an angular-independent model in Al. On the
other hand, we find that the EAM errors depend very sensi-
tively on the change of volume, �V; in particular, the EAM
values deviate significantly from the first-principles results
for large compressions. The errors in energy can reach as
high as 1 eV/atom for 40% compression. This dramatic dif-
ference cannot be accounted for by the fitting errors of EAM
because all three potentials show exactly the same behavior.
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FIG. 1. �Color online� The difference for the elastic properties calculated by EAM and VASP. �a�, �c�, �e�, and �g� show the cohesive
energy differences in eV/atom; �b�, �d�, �f�, and �h� show the stress differences in eV /Å3. �a�–�d� are calculated by Ercolessi-Adams potential
�Ref. 21�. �c� and �d� are the corresponding contour plots of �a� and �b�, respectively. �e� and �f� are calculated by Mishin et al. �Ref. 22�
potential and �g� and �h� are calculated by Voter-Chen potential. �e�–�h� are contour plots.
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Moreover, the shortest interatomic distance in the com-
pressed unit cell is 2.1 Å, which is still within the fitting
range of the potentials. For example, the fitting range of
bond length is from 2.0 to 6.3 Å in the potential of Mishin et
al.22 and 2.0–5.6 Å in Ercolessi-Adams potential.21 The re-
sults suggest that the errors come from the model itself.

When the interatomic distance decreases, the gradient of
electronic density increases. For a large compression, the
electron-density gradient could become too large for the
UDA of EAM to be valid. Indeed, we find that the density
gradient increases considerably in compressions, with the
maximum value of the gradients rising from 0.38 Å−4 for the
perfect lattice to 0.54 Å−4 for 40% compression. On the
other hand, the expansion of the lattice reduces the density
gradient and thus does not violate the UDA.

To further the argument, we perform additional calcula-
tions for the generalized stacking fault energy ��� surface,
which along with elastic constants, determines the plastic
behavior of materials. We have carried out 293 energy cal-
culations for the entire � surface with the sparse-grid repre-
sentation. The supercell consists of nine layers in the �111�
direction for both EAM and VASP calculations.

The � energy along �121̄� and �101� directions is shown in
Figs. 2�a� and 2�b�. Again, overall agreement between the
three EAM potentials and VASP is good. However, in the
neighborhood of the �101� unstable stacking fault and the
run-on stacking fault �the last two entries in Table I�, the
magnitude of the energy error is significant. In particular, the
largest error of EAM occurs at the run-on stacking fault in
which the atoms in the two neighboring �111� layers are right
on top of each other, resulting in large density gradients. The
valence electronic density and its gradient in the “run-on”
configuration are presented in Fig. 2�c�. Noted that the maxi-
mum gradient of valence electron density 	g	max of both the
unstable and the run-on stacking faults is comparable to the
corresponding value of large compressions �
0.5 Å−4�, sug-
gesting that the failures of EAM can be indeed attributed to
large density gradients, irrespective of the specific atomic
configurations. Furthermore, the data in the brackets of Table
I show a general trend that the magnitude of EAM errors
increases as the maximum density gradient increases. Again
the shortest interatomic distance in Table I is 2.33 Å, which
is within the fitting range of bond length for the EAM po-
tentials.

III. DENSITY GRADIENT CORRECTION MODEL

Having established the importance of the density gradient,
we propose a gradient-corrected model which could poten-
tially improve the transferability of EAM. The model is
based on the pioneering work of Stott and Zaremba20 on
“quasiatoms.” Stott and Zaremba20 showed that by using a
perturbation expansion for an inhomogeneous background
density, the embedding energy of a “quasiatom” can be ex-
pressed rigorously as a function of the background density
and its gradient. Based on the “quasiatoms” theory, we intro-
duce three additional terms which account for the gradient
corrections to the exchange, correlation, and kinetic-energy
contributions to the embedding energy of EAM. In this con-
text, the original embedding function of EAM can be re-
garded as the UDA to the embedding energy. Specifically, the
corrected embedding function becomes

Fi��̄i,si� = F0��̄i� + F̃C��̄i�g�si� + F̃X��̄i�h�si� + F̃G��̄i,si� ,

�1�

where �̄i�� j�i� j
at�Rij� is the background density at atom i

and � j
at is the density contribution from atom j. Rij = 	R� i−R� j	
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FIG. 2. �Color online� � energy along �a� �121̄� and �b� �101�
directions from VASP and EAM calculations. The horizontal axis is
in the unit of the Burgers vector of Al�2.86 Å�. The contours of
valence electronic density and the density gradient for the “run-on”
configuration are shown in �c�. The arrow represents the direction
and magnitude of the density gradient.

TABLE I. Fault vectors and energies for four stacking faults obtained from VASP and EAM calculations.
All energies are in mJ /m2. 	g	max denotes the maximum gradient of valence electronic density calculated by
VASP, and is in Å−4. PBE, EA, Mishin, and Voter stand for the results calculated by VASP, Ercolessi-Adams
�Ref. 21�, Mishin et al. �Ref. 22�, and Voter-Chen EAM potential, respectively. The errors of EAM results are
presented in brackets. Rmin�Å� is the nearest-neighbor distance in the corresponding configurations.

Vector PBE EA Mishin Voter 	g	max Rmin

1 /6�121̄� 111 121�10� 157�46� 87�−24� 0.398 2.86

1 /10�121̄� 184 132�−56� 190�6� 118�−66� 0.399 2.74

1/4�101� 564 663�99� 603�39� 455�−109� 0.507 2.47

1 /3�121̄� 1208 1667�459� 1354�146� 1096�−112� 0.581 2.33
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and R� i stands for the atomic coordinates. Although the back-
ground density �̄i is not the same as the total density ��r��
where ��r��=� j� j

at�	r�−R� j	�, they are closely related and the
gradients of both densities are well defined. In particular, we
can define a dimensionless background density gradient si as
si� 	�R� i

�̄i	 / �̄i
4/3, where 	�R� i

�̄i	 is the amplitude of background
density gradient. In practice, si can be approximated by its

local average: si�si��
1

��̄i�4/3 � j�i	
�� j

at�Rij�
�Rij

	. F0��̄� is the UDA

embedding function and F̃G is the gradient correction to the

kinetic energy. The leading term of F̃G is of the von

Weizsäcker form,28 and can be approximated as F̃G��̄ ,s�
= K̃0��̄�k�s�. Here K̃0 resembles the Thomas-Fermi kinetic

energy29,30 and k�s�=	0
1+k11s2+k12s4

1+k21s2+k22s4 s2. 	0, k11, k12, k21, and k22

are undetermined parameters.
For exchange and correlation energy corrections, we

adopt the functional form of PBE-GGA due to its simplicity.

F̃C and F̃X in Eq. �1� correspond to the correlation and ex-
change energy of the local-density approximation �LDA� of
DFT and g�si� and h�si� are the corresponding gradient cor-

rections. The explicit forms F̃C and F̃X can be found in stan-
dard references of LDA.31,32 We assume spin degeneracy
here although the spin polarization can be considered easily
and could be useful in the development of spin-dependent
EAM potentials for magnetic materials. In addition, we re-
quire that the modified embedding functions have the same
limiting behavior as the exact functions,

�g�s�F̃C + h�s�F̃X��� s2F̃X, s → 0

→− F̃C + 
0F̃X, s → � .
� �2�

We choose g�s�=− s4

g0+g1s2+s4 and h�s�=

0s2

1+�s2 , which satisfy the
above conditions although other forms of g�s� and h�s� can
also be used.

Over all, there are six functions, F̃C, F̃X, K̃0, �at�R�, F0���,
and �R�, which are to be fitted. The first three are new terms
and in conjunction with g�s�, h�s�, and k�s�, they represent
the gradient corrections to the embedding function.

Since the UDA functions, K̃0��̄�, F̃C��̄�, and F̃X��̄�, have
the same functional forms as their DFT/LDA
counterparts,29–32 we have

K̃0��̄� � �̄5/3, �3a�

F̃C��̄� = �̄�c1 + c2rs�ln�1 +
1

�rs
p+1�, rs �

1

�̄1/3 , �3b�

F̃X��̄� � �̄4/3. �3c�

Replacing the proportional sign “�” in all the above equa-
tions with an equal sign “=,” one can fit the gradient-
corrected EAM �GCEAM� potential by introducing 13 addi-
tional parameters. These additional parameters are c1, c2, �,
p, g0, g1, h0, h1, 	0, k11, k12, k21, and k22. Among them, seven

parameters �k11, k12, k21, k22, g0, g1, and �� are introduced
through the gradient corrections. 
0 and 	0 can be absorbed
into the embedding functions.

IV. EXAMPLE: GRADIENT-CORRECTED VOTER-CHEN
POTENTIAL

In this section, we apply the gradient corrections to the
VC potential, and the resultant potential is termed as
GCEAM-VC. It is important to mention that the corrections
are not constrained in any way by the specific form of the
EAM potential. We choose the VC potential because its
simplicity—it has only five parameters, much fewer than the
other EAM potentials, such as the potentials of Mishin et
al.22 and Ercolessi-Adams.21 As a result, VC is not as accu-
rate as the other EAM potentials. However, the simplicity of
the VC potential renders more transparent physics and frees
us from intensive parameter fitting, which is not the empha-
sis of the present paper. The goal of the paper is to illustrate
the importance of the density gradient corrections in improv-
ing the transferability of EAM rather than to generate the
best possible EAM potential for Al. Had we started from an
EAM potential with more parameters, we would have gotten
even better test results for Al. Nevertheless, even with the
VC potential, the gradient corrections can significantly im-
prove the self-interstitial energies, stacking fault energies,
etc., which involve high-density gradient configurations.

The GCEAM-VC potential takes the general form of
EAM model. The cohesive energy of a system can be written
as

E =
1

2 �
i,j��i�

ij�Rij� + �
i

Fi��̄i,si� , �4�

where embedding function Fi��̄i ,si� is expressed in Eq. �1�.
The parameter fitting in GCEAM-VC follows the same

procedure of the Voter-Chen potential,23 but with two modi-
fications. The first modification is that the pairwise interac-
tion now is taken the form of

�R� = 1�R� + 2�R� ,

1�R� = DM�1 − e−�M�R−RM��2 − DM ,

2�R� = C�RM

R
�n

. �5�

Here, 1�R� is a Morse potential used in the original
Voter-Chen potential. 2�R� is added to account for the re-
pulsive interaction at short distance, �R→0�→� when C
�0. However, if one prefers to use fewer parameters, 2�R�
can be ignored without worsening the results �see the discus-
sions of Fig. 4�.

The second modification is that we do not fit the diatomic
molecular data. Instead, the force constants of bulk Al with
different lattice constants are fitted because accurate force
constants give rise to accurate phonon dispersions, and
hence, accurate thermal properties such as thermal capacity
and conductivity. The force constants are fitted for several
lattice constants, including 0.9a0, 0.95a0, a0, 1.05a0, and
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1.1a0, where a0 is the equilibrium lattice constant of bulk Al.
It is found the GCEAM-VC potential gives good description
for the diatomic properties without fitting them �see Table
II�. This is an example of improved transferability of the
GCEAM model.

The embedding function of both VC and GCEAM-VC
potentials is determined by fitting the equation of states
�EOS� to the universal EOS of Rose et al.33 Because the
universal EOS does not agree exactly with the DFT �VASP�
values �see Fig. 3�, it is inevitable that both VC and
GCEAM-VC potentials would deviate from DFT results for
large lattice expansions or large interatomic distances. How-
ever, as will be shown later, the gradient corrections can
improve significantly the description of high-density gradient
configurations involving lattice defects.

The density function of the VC potential is given as

��r� = r6�e−�2r + 29e−2�2r� , �6�

�2 needs to be fitted. We keep the same smoothness condi-
tions for the pairwise interaction, atomic density, and EOS
function in GCEAM-VC as in the VC potential,23 with the
cutoff radius Rcut of these functions to be fitted. Thus, there
are seven parameters, DM, �M, RM, C, n, �2, and Rcut to be
fitted before applying the gradient corrections. Overall, there
are 20 parameters in GCEAM-VC potential, including 13
parameters associated with the gradient correction terms. The
optimized values of all the parameters are presented in Table
II.

The pair interaction �R� and the atomic density ��R� of
GCEAM-VC potential are plotted in Fig. 4 in comparison
with the VC potential. It is found that the pair interaction of
GCEAM-VC changes very little from that of VC. Although

the atomic density function of GCEAM-VC potential ap-
pears to be rather different from that of VC, this turns out not
to be the case. Using the fact that Eq. �4� is invariant under
the transformation

��R� → t��R�,F��,s� → F��/t,s/t� ,

we can define a scaled atomic density �̃�R�
=��R� /max���R��. �̃�R� is plotted in the bottom panel of Fig.
4 and one finds little difference between the GCEAM-VC
and VC atomic density functions. Therefore, we conclude
that all improvements to the VC potential come from the
gradient corrections, i.e., the model itself.

Some important properties predicted by VC and
GCEAM-VC potentials are collected in Table III. From
Table III, it is found that the GCEAM-VC improves the over-
all performance of the VC potential, especially for high-
density gradient configurations, such as self-interstitials. The
table clearly demonstrates the success and improved transfer-
ability of GCEAM-VC.

TABLE II. One set of optimized parameters for GCEAM-VC. Length and energy unit are in Å and eV,
respectively.

c1 −0.45618 g1 −1.60375 k12 −58.09505 RM 1.34426

c2 −1.03903 h0 0.41370 k21 −10.15397 C 0.43750

� 1.17295 h1 0.00327 k22 26.82479 n 4.06038

p 0.29559 	0 −0.52795 DM 4.00963 �2 3.46742

g0 1.63667 k11 157.54365 �M 2.05403 Rcut 5.56250
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FIG. 3. �Color online� The cohesive energy per atom of fcc Al as
a function of the lattice parameter �the scaled equation of states�.
Ecoh is the cohesive energy for equilibrium lattice constant a0. The
universal EOS of Rose et al. is represented by the blue line, and the
VASP values are represented by red open circles.
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Although GCEAM-VC gives a better result for the melt-
ing temperature than VC, the deviation from the experimen-
tal value is still large. This is due to the fact that the melting
process is associated with long-range interactions, whereas
the density gradient corrections tend to be short ranged.
Therefore the gradient corrections are not expected to have
significant effect on melting temperature. This is not an in-
trinsic problem of the GCEAM model because one could
improve the melting temperature by fitting more accurately
the long-range tails of the UDA functions, e.g., ��R�, �at�R�,
and F0���.

In Fig. 5, we compare the phonon dispersions between
GCEAM-VC and VC, against the experimental data. It is

G [q00] X K [qq0] G [qqq] L
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2
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8

10

ν
(T
H
z)

GCEAM-VC
Voter-Chen

FIG. 5. �Color online� The phonon-dispersion curves for Al. Red
lines are calculated with GCEAM-VC potential, blue dash lines are
calculated with VC potential, and open circles are experimental data
taken from Ref. 38.

TABLE III. Properties of Al predicted by VC and GCEAM-VC potentials in comparison with experi-
mental and/or ab initio data. * denotes fitted properties.

Experimental or ab initio Voter-Chena GCEAM-VC

Lattice properties

a0�Å�� 4.05b 4.05 4.05

E0�eV /atom�� −3.36 c −3.36 −3.36

B�GPa�� 79d 79 79.5

c11�GPa�� 114d 107 113

c12�GPa�� 61.9d 65.2 62.5

c44�GPa�� 31.6d 32.2 32.9

Diatomic Properties

De�eV� 1.60e 1.54 1.61

Re�Å� 2.47e 2.45 2.52

Phonon frequencies

�L�X��THz� 9.69f 8.55 9.62

�T�X��THz� 5.80f 5.20 5.36

�L�L��THz� 9.69f 8.86 10.1

�T�L��THz� 4.19f 3.70 3.82

�L�K��THz� 7.59f 6.87 7.69

�T1
�K��THz� 5.64f 4.80 5.00

�T2
�K��THz� 8.65f 7.76 8.69

Vacancy

Ev
f �eV� 0.68g 0.63 0.65

Self-interstitial

EI
f�Oh��eV� 2.73 2.10 2.41

EI
f�Td��eV� 3.08 2.55 2.87

EI
f��111�dumbell��eV� 2.97 2.48 2.81

EI
f��110�dumbell��eV� 2.76 2.12 2.38

EI
f��100�dumbell��eV� 2.53 2.02 2.30

Melting temperature

Tm�K� 933.6 593.5�10 672.5�10

aReference 23.
bReference 34.
cReference 35.
dReference 36.
eReference 37.
fReference 38.
gReference 39.
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found that GCEAM-VC predicts much better results than
VC.

Furthermore, with the help of the sparse-grid method, we
calculate the entire � surface using first-principles VASP
method. From the � surface, one can derive the properties of
all �111�-type dislocations in Al.40 The absolute errors be-
tween the � surface determined by various EAM potentials
and VASP calculations are shown in Fig. 6. The projection of
the � surface along two special orientations is plotted in Figs.
2�a� and 2�b�. It is found that the GCEAM-VC potential
yields the most accurate result for overall � surface. Here we
should emphasize that GCEAM-VC does not fit any stacking
fault configurations. In contrast, potentials of Ercolessi and
Adams21 and Mishin et al.22 both have included � energies in
their fitting database, and yet their results are not as good as
GCEAM-VC. This is an important success of GCEAM po-
tential in terms of transferability. Moreover, GCEAM-VC
potential gives much more accurate stacking fault energy
near the “run-on” configuration ��

�3
3 ,0�, �

�3
3 ,1�, and � 5�3

6 , 1
2 �

in Fig. 6�. These results confirm that indeed the gradient
corrections are crucial for describing high-density gradient
configurations, such as the “run-on” stacking faults. On the
other hand, the errors of GCEAM-VC appear at configura-
tions where interatomic distance is greater than that of a
perfect lattice. These errors are not the intrinsic problem of
the gradient correction model, but rather due to the fitting
strategy of the Voter-Chen potential.

Finally, it is useful to mention that the force calculation in
GCEAM maintains the comparable numerical efficiency
with the standard EAM models. Thanks to the fact that the
modified embedding functions can be factored by a
�-dependent term and an s-dependent term, the analytical
expression of force remains simple-it has several additional

terms that are of similar complexity of that of standard EAM.
To compute these additional terms, the GCEAM needs to
perform extra calculations of which the most time-
consuming part is the second derivatives of the charge den-
sity with respect to distance. By using cubic spline interpo-
lations, these calculations can be made rather efficient and as
a result, the GCEAM force calculation takes less than twice
of the CPU time of the standard EAM. The code package for
calculating the energy and force with GCEAM-VC potential
is available via the world wide web41 or via electronic mail
at wugaxp@gmail.com.

V. DISCUSSION AND CONCLUSION

Finally, it is instructive to relate the present corrections to
other EAM models.2,42,43 In the original EAM model, the
electron correlations arising from the inhomogeneous back-
ground density are largely ignored. The goal of the present
model is to capture the missing correlations by taking into
consideration of density gradients. Apart from the inhomo-
geneity of the density, the correlation effect also manifests
itself in small molecules and clusters—a well-known fact in
quantum chemistry that motivated the development of
GGAs. By introducing a PBE-GGA-like correction to the
exchange-correlation part of the embedding energy, the
present model could improve the description of the correla-
tion effect. The modified EAM �MEAM� and its multistate
variant strive to improve the transferability by making the
background density �̄ angular and reference-state dependent.
However, since they are based on UDA, the MEAM model
does not treat the electron correlations adequately. As a re-
sult, it cannot deal with small clusters accurately as docu-
mented in the literature.44 The charge-transfer EAM �CT-
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FIG. 6. �Color online� The absolute error between the � surface from EAM potentials and first-principles calculations 	EGSF
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VASP	. In
�a�–�d�, the EAM potentials are Ercolessi-Adams �Ref. 21�, Mishin et al. �Ref. 22�, VC, and GCEAM-VC, respectively.
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EAM� also recognizes the importance of the correlation
effect. However it addresses the problem by introducing a
reference-state �and its charge� dependent background den-
sity �̄. Since the present model considers exchange-
correlation energy explicitly, it can achieve the same goal of
CT-EAM with a simpler function form. Moreover, one could
incorporate MEAM and its variants into the present model
by making the background density �̄ in Eq. �1� as angular,
reference-state and/or charge-dependent if so desired.

In conclusion, we have performed detailed EAM and
first-principles calculations of Al for elastic deformation and
generalized stacking fault energy. We find that although
EAM models reproduce well the first-principles results for
most cases, they tend to fail when the electron-density gra-
dients become substantial. We attribute the failures of EAM
to the violation of UDA underlying the existing EAM mod-

els. To remedy the deficiency of UDA, we propose an im-
proved EAM model which considers explicitly the gradient
corrections to the embedding function in terms of the
exchange-correlation energy and the kinetic energy. We show
that the gradient-corrected model can significantly improve
the transferability of EAM and represents a new direction for
developing more transferable EAM potentials.
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